# 130 Liberty Street New York, New York

# Supplemental Investigation Summary Report

# **Interior Wall Interstitial Space Sampling Summary Results**

Prepared for:

**Lower Manhattan Development Corporation**One Liberty Plaza, 20<sup>th</sup> Floor, New York, NY 10006



Prepared By:



**TRC Environmental Corp.** 1430 Broadway, 10<sup>th</sup> Floor New York, New York 10018

| 1. Int | roduction                               | 1  |
|--------|-----------------------------------------|----|
| 1.1    | Background                              | 1  |
| 1.2    | Scope of Work                           |    |
| 1.3    | Previous Environmental Studies          |    |
| 1.4    | Purpose and Objectives                  | 4  |
| 2. Me  | ethodology                              | 5  |
| 3. Res | sults                                   | 6  |
| 3.1    | Asbestos                                | 6  |
| 3.2    | Lead                                    | 8  |
| 3.3    | Silica                                  | 9  |
| 3.4    | Dioxin                                  |    |
| 3.5    | Polycyclic Aromatic Hydrocarbons (PAHs) | 12 |
| 3.6    | Man Made Vitreous Fibers (MMVF)         | 12 |
| 4. Fin | ndings                                  | 14 |
| 5. Co  | nclusions and Recommendations           | 14 |
| 6. Ref | ferences                                | 15 |



# 1. INTRODUCTION

TRC Environmental Corporation (TRC) was contracted and authorized by the Lower Manhattan Development Corporation (LMDC) to conduct a *Supplemental Investigation* (SI) of previously inaccessible spaces in the building located at 130 Liberty Street (the Building). The intent of the SI is to address the additional sampling recommendations presented in The Louis Berger Group, Inc. (Berger) *Initial Building Characterization Report* dated September 14, 2004. This Summary Report presents the results of the supplemental investigation and testing of the previously inaccessible interior wall interstitial spaces within the Building.

# 1.1 Background

The Building is located across the street and south of the WTC site and is a former office building comprised of 40 stories and approximately 1.5 million square feet. The massive debris generated from the collapse of the South Tower of the WTC broke approximately 1,500 windows, curtain wall, and structural components creating a gash (Gash Area) in the Building's exterior exposing portions of the interior north side of the Building between the 7<sup>th</sup> and 24<sup>th</sup> floors. The debris demolished the plaza in front of the Building, exposing the basement and subbasement (Basement A and Basement B) areas and ruptured a diesel fuel tank in the basement, the contents of which burned. The Gash Area and broken windows exposed the interior of the Building to the elements.

As a result of the collapse of the World Trade Center (WTC) on September 11, 2001, a combination of soot, dust, dirt, debris, and contaminants settled in and on the Building. See the *Initial Building Characterization Report* for additional background information.

#### 1.2 Scope of Work

In the *Initial Building Characterization Report*, Berger identified areas that were inaccessible during their investigation including the following locations:

- Curtain Wall Cavity
- Cell Systems within Floors
- Interstitial Spaces within Interior Walls and Column Cavities
- Inside Vertical Shafts
- Exterior Building Surfaces

In addition, Berger recommended performing preliminary waste characterization.



This SI summary presents the results of additional inspection and sampling performed by TRC of the previously inaccessible interior wall interstitial spaces within the Building. SIs regarding curtain wall cavity, heating, ventilation, and air conditioning (HVAC) ductwork, cell systems within floors, fireproofing, exterior building surfaces, waste characterization, and visual inspection of the Building for mold and asbestos containing building materials (ACBM) are addressed in separate summaries.

As part of the supplemental investigation, TRC collected the following samples:

| COPC          | Asbestos | Lead | Silica | Dioxin | PAH | MMVF |
|---------------|----------|------|--------|--------|-----|------|
| Total Samples | 126      | 106  | 35     | 55     | 55  | 27   |

For the interior wall interstitial spaces within 130 Liberty Street, TRC collected ten representative surface wipe samples for asbestos, lead, silica, polycyclic aromatic hydrocarbons (PAHs), man-made vitreous fibers (MMVF), and dioxins analysis. In addition, three bulk samples were collected for asbestos. Asbestos, lead, silica, PAHs, dioxins, and MMVF make up the United States Environmental Protection Agency (USEPA) contaminants of potential concern (COPCs) list.

TRC utilized a tiered approach to sample analysis. All asbestos and lead wipe samples were analyzed and the results reviewed. Results of this study were compared to the findings in the *Initial Building Characterization Report* and benchmark and background concentrations presented in previous environmental studies as detailed in the following sections. If surface concentrations of asbestos and lead were found to be similar to the *Initial Building Characterization Report* and elevated when compared to benchmark and background concentrations, further analysis for the remaining COPCs was not conducted. If surface concentrations of asbestos and lead were found to be less than the *Initial Building Characterization Report*, benchmark, and background concentrations, further analysis for the remaining COPCs was conducted.

#### 1.3 Previous Environmental Studies

Several studies concerning WTC-related contaminants have been performed by, or with the review of, the federal, state, and local regulatory authorities in the aftermath of the events of September 11, 2001. In particular, the USEPA has been responsible for studies associated with the development of the EPA's list of COPCs, as discussed in this section.

The USEPA COPC Committee developed, in their World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health Based Benchmarks, Peer Review Draft (September 2002), a tiered approach to evaluate the



health risks posed by contaminants that might be present in an indoor environment (air and settled dust) for residential reoccupancy. For each COPC, three levels were developed:

- Tier I Level above which, after elimination of potential indoor sources (combustion by-products, stored chemicals, etc.), aggressive clean-up action should be taken expeditiously along with follow-up sampling to confirm attainment of Tier III level.
- Tier II Range where diligent cleaning should continue, after elimination of potential indoor sources (combustion by-products, stored chemicals, etc.), with follow-up sampling to confirm attainment of Tier III level.
- Tier III Level below which the risk is negligible or consistent with the New York City background level found in the USEPA Background Study as identified below.

These levels were established for residential reoccupancy. The Tier I screening level was intended to be protective of a resident who may have been exposed to WTC-related contaminants in their residence for one year. The Tier III clearance level was intended to be protective of a resident who is exposed to WTC-related contaminants in their residence for 30 years, which was the upper-bound estimate for residency in one dwelling. For COPCs in settled dust, the tiered values are as follows:

|                    | Settled Dust |                          |                      |  |  |  |  |
|--------------------|--------------|--------------------------|----------------------|--|--|--|--|
| COPC               | Tier I       | Tier II                  | Tier III             |  |  |  |  |
| Asbestos (str/cm2) | >30,000      | 30,000 to background     | Background           |  |  |  |  |
| Lead (ug/ft2)      | >40          | 40 to 25 (or background) | <25 (or background)  |  |  |  |  |
| Silica             |              | Above background         | Background           |  |  |  |  |
| PAH (mg/m2)        | >9           | 9 to 0.3 (or background) | <0.3 (or background) |  |  |  |  |
| MMVF (str/cm2)     | >100,000     | 100,000 to background    | Background           |  |  |  |  |
| Dioxin (ng/m2)     | >120         | 120 to 4 (or background) | <4 (or background)   |  |  |  |  |

These levels were developed to be risk-based levels for residential settings. While the USEPA residential benchmark and background concentrations relate to residential settings and are not directly applicable to a commercial deconstruction project, these studies can be used to put the results of this supplemental investigation into relative context.

Subsequent to peer review of the September 2002 report, the USEPA COPC Committee developed, in their *World Trade Center Indoor Environmental Assessment: Selecting Health-Based Benchmarks (May 2003)* report, health based benchmarks that reflected only the Tier III levels.



The USEPA, Region 2, also developed the *World Trade Center Background Study Report* (*April 2003*). The objective of this study was to determine and/or estimate indoor baseline levels or background concentrations for the presence of specific contaminants in residential buildings unaffected by the WTC disaster. The average background concentrations for COPCs in settled dust on hard surfaces are summarized below.

| COPC               | Average Background         |
|--------------------|----------------------------|
| Asbestos (str/cm2) | 6,192                      |
| Lead (ug/ft2)      | 1.78                       |
| Silica (ug/ft2)    | 79.6 (expressed as quartz) |
| PAH (mg/m2)        | < 0.29                     |
| MMVF (str/cm2)     | 52                         |
| Dioxin (ng/m2)     | 0.693                      |

Based on the text by Millette and Hays, *Settled Asbestos Dust Sampling and Analysis*, levels of asbestos in settled dust as determined by the microvacuum techniques are considered low if less than 1,000 str/cm<sup>2</sup>. Levels above 10,000 str/cm<sup>2</sup> are considered generally above background. Levels above 100,000 str/cm<sup>2</sup> are considered high and in the range of significant accidental release from an abatement site.

## 1.4 Purpose and Objectives

The objective of the SI is to provide additional information relative to the concentrations of COPCs within previously inaccessible spaces. This SI summary presents the results specifically for the interior wall interstitial space investigation.

The SI of previously inaccessible areas is intended to assist in determining what measures and protocols may be required in support of the 130 Liberty Street cleaning and deconstruction plan. In particular, the results of the SI are intended to provide reference information allowing for informed decisions to be made regarding appropriate cleaning and deconstruction methods. These decisions include the development and implementation of engineering controls to contain the work zone (i.e., to ensure no exposure to the surrounding community during the cleaning and deconstruction) and appropriate methods for the disposal or recycling of materials generated by the cleaning and deconstruction activities. Using the available characterization results, LMDC, its consultants, and the selected deconstruction contractor can develop and implement appropriate deconstruction protocols and safety precautions for the cleaning and deconstruction process to ensure the health and safety of workers and the surrounding community.



#### 2. METHODOLOGY

This section presents the methodologies implemented for the interstitial space characterization in previously inaccessible areas within the Building. These tasks were implemented in accordance with the *Sampling Analysis and Quality Assurance Project Plan* (SAQAPP) developed by TRC dated November 15, 2004.

TRC collected representative wipe and bulk samples for the COPCs from the interior wall interstitial spaces subsequent to establishment of a clean contained area. Prior to any sampling, sampling locations were selected that were previously undisturbed representative areas (i.e. not impacted by previous investigations or cleaning protocols). The following procedure was utilized to access the interstitial cavity spaces:

- 1. The wallboard to be cut was surveyed with a stud finder and anticipated cut lines marked to provide multiple openings at a sample location.
- 2. A rotary cutting tool was utilized to cut <sup>3</sup>/<sub>4</sub> of the depth of the sheetrock along the cut line to ensure that the wallboard backing paper was not penetrated.
- 3. The area was cleaned and a tent containment was created around the work area. The contained work area was maintained under positive pressure. This work area was then visually inspected, and air samples collected for asbestos and lead.
- 4. Upon receipt of successful clearance air samples, the wallboard cut line was sprayed with water, then the remaining depth cut with a utility knife and wallboard removed into the tent containment to access the interstitial cavity space.

Asbestos and MMVF wipe samples were collected following American Society for Testing and Materials (ASTM) 6480-99. Lead and silica wipe samples were collected following the United States Department of Housing and Urban Development (HUD) Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing, Appendix 13.1. Dioxin and PAH samples were collected following ASTM D6661-01. Samples were analyzed as per the following methods:

| COPC     | Analytical Method  |
|----------|--------------------|
| Asbestos | ASTM 6480-99       |
| Lead     | USEPA SW 846-7420  |
| Silica   | NIOSH 7500 (XRD)   |
| Dioxin   | USEPA SW 846-8290  |
| PAH      | USEPA SW 846-8270C |
| MMVF     | EMSL MSD 0310      |



Bulk asbestos samples were analyzed per method New York State Environmental Laboratory Approval Program (NYS ELAP) 198.1.

All samples were properly labeled as per the SAQAPP. Asbestos, lead, silica, and MMVF samples were delivered to the EMSL Analytical Inc. laboratory, an independent New York State Department of Health certified laboratory (NYSDOH ELAP # 11506). PAH and dioxin samples were delivered to Paradigm Analytical Labs in Wilmington, North Carolina (NYSDOH ELAP # 11685).

#### 3. RESULTS

#### 3.1 Asbestos

Ten asbestos wipe, one field blank, and three bulk samples were collected on various floors of the Building as detailed below. Samples were divided up by Zone, as described in the *Initial Building Characterization Report*. Zones 2 and 3 apply to TRC's study and are defined as follows:

Zone 2: Office space located at or below the 24<sup>th</sup> Floor that may have been subjected to dust entering the Building through the Gash, HVAC system (and possibly circulated through the HVAC system), vertical shafts, or broken windows.

Zone 3: Office space located above the 24<sup>th</sup> Floor that may have been impacted by dust distributed through the HVAC system, vertical shafts, or broken windows.

In all of the ten wipe samples, no asbestos was detected. However, asbestos was detected, at 1.57% (chrysotile), in one of the three asbestos bulk samples collected from the second floor. This sample was collected from an uncontained area on the second floor that had a pre-existing large penetration of the sheetrock. Therefore this dust and associated result are more representative of general interior conditions, than an unimpacted interior wall interstitial space. Sample results are provided in the attached Tables 1 and 2.

| Asbestos Sample ID        | Floor | Location        | Zone |
|---------------------------|-------|-----------------|------|
| Wipe Samples              |       |                 |      |
| KD-7-W-INT.WALL-ASB-001I  | 7     | Sheetrock GF-56 | 2    |
| KD-26-W-INT.WALL-ASB-001I | 26    | Sheetrock GF-56 | 3    |
| KD-4-W-INT.WALL-ASB-002I  | 4     | Sheetrock DC-23 | 2    |
| KD-20-W-INT.WALL-ASB-003I | 20    | Sheetrock CB-34 | 2    |
| KD-16-W-ASB-INT.WALL-004I | 16    | Sheetrock HG-56 | 2    |
| KD-14-W-ASB-INT.WALL-005I | 14    | Sheetrock AB-24 | 2    |
| KD-10-W-ASB-INT-007I      | 10    | Sheetrock GF-56 | 2    |



| Asbestos Sample ID            | Floor | Location                    | Zone |
|-------------------------------|-------|-----------------------------|------|
| KD-2-W-INT.WALL-ASB-008I      | 2     | Sheetrock HG-45             | 2    |
| KD-24-WIPEINT.WALL-ASB-009I   | 24    | Sheetrock, NW Area AB-45    | 3    |
| KD-29-WIPEINT.WALL-ASB-010I   |       | Sheetrock wall, NE area GH- |      |
| KD-29-WIPEINT.WALL-ASD-0101   | 29    | 78                          | 3    |
| Bulk Samples                  |       |                             |      |
| KD-7-ASB-INT.DUST-001I        | 7     | FG-56                       | 2    |
| KD-02-BULK-INT.WALL-DUST-007I | 2     | G-3                         | 2    |
| ZD-29-BULK-INTWALL-DUST-001I  | 29    | NE area GH-78               | 3    |

A limited data validation was performed on the sample results in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review EPA 540/R-99/008* (October 1999). In general, the data appeared to be valid as reported and may be used for decision-making purposes.

TRC reviewed Berger's *Initial Building Characterization Report*. Berger collected 40 supplemental screening samples of the settled dust from porous and non-porous surfaces and analyzed for asbestos using TEM. The samples were collected from various places within the Building, including, but not limited to carpeting, counters, vent units, and above the ceiling tiles. The results revealed detectable levels of asbestos above the residential background level of 6,192 structures/cm² identified in the EPA *World Trade Center Background Study Report Interim Final* (April 2003). The highest concentrations of asbestos were identified in the first and second floors, fifth floor mechanical room, and the 40<sup>th</sup>/41<sup>st</sup> floor mechanical room. Asbestos was detected in dust at concentrations in excess of 6,192 structures/cm² in 24 of the 31 floors sampled by TEM analysis (77%). The samples containing asbestos ranged from a minimum concentration of less than 891 structures/cm² (from Floors 5, 24, 25, 28, 34, and 41) to a maximum concentration of 4,879,200 structures/cm² (from Floor 2). These results are considerably higher than the non-detect asbestos concentrations found in this SI.

TRC reviewed the *Deutsche Bank Damage Assessment report: Contamination Report Pursuant to Testing Protocol-06, Interior Wall Cavities Data Report* by RJ Lee Group, Inc. dated May 2003. The average and maximum asbestos concentrations of samples collected in the non-gash areas of this report were 827,000 str/cm<sup>2</sup> and 61,410,000 str/cm<sup>2</sup>, respectively. These results are all significantly higher than the non-detect asbestos concentrations found in the interstitial walls of this SI.

TRC reviewed the *Test Report on Wall Cavities* "Wall Cell Protocol" by Young Laboratories, Inc. dated September 27, 2004, which is part of the *Insurer's Expert Report Related to the Deutsche Bank's 130 Liberty Street Claims*. In this report, samples were



collected from the interior wall cavity wallboard surfaces from three different wall types: floor to slab, non-insulated floor to ceiling, and insulated floor to ceiling using the TEM microvacuum method. The results are as follows:

|                                |    | Minimum             | Maximum             | Average             | Non detects |
|--------------------------------|----|---------------------|---------------------|---------------------|-------------|
| Wall Type                      | n  | str/cm <sup>2</sup> | str/cm <sup>2</sup> | str/cm <sup>2</sup> | %           |
| Floor to slab                  | 30 | <1,596              | 67,602              | 8,534               | 26.7        |
| Non-insulated floor to ceiling | 24 | <1,596              | 20,345              | 3,015               | 66.7        |
| Insulated floor to ceiling     | 30 | <1,596              | 215,412             | 10,505              | 43.3        |

Compared to the wipe sample results of this SI, these results on average are higher.

#### 3.2 <u>Lead</u>

Ten lead wipe and one field blank samples were collected at the same locations as asbestos detailed in Section 3.1. Wipe sample results ranged from less than 10 ug/ft<sup>2</sup> to 24 ug/ft<sup>2</sup> with an arithmetic average of 8 ug/ft<sup>2</sup>. Sample results are provided in the attached Table 3.

A limited data validation was performed on the sample results in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (July 2002). In general, the data appeared to be valid as reported and may be used for decision-making purposes.

According to Berger's Initial *Building Characterization Report*, there was significant variation in the lead testing results collected from the Building dust samples. Lead was detected in 122 of 125 samples tested. Lead results of samples collected above the plenum ranged from 350 ug/m² (32.52 ug/ft²) to 10,900 ug/m² (1,012.6 ug/ft²). Lead results from samples collected below the plenum ranged from 150 ug/m² (13.92 ug/ft² - in Zone 3) to 101,000 ug/m² (9,383.2 ug/ft² - in Zone 1). These results are considerably higher than the lead concentrations found in the interstitial walls of this SI.

TRC reviewed the *TP-06 Interior Wall Cavities Data Report*, which reported the average and maximum lead concentrations of samples collected in the non-gash areas of this report were 171.9 ug/ft<sup>2</sup> and 1,630 ug/ft<sup>2</sup>, respectively. These results are considerably higher than the lead concentrations found in the interstitial walls of this SI.

According to the *Test Report on Wall Cavities "Wall Cell Protocol"* lead results of bulk dust samples collected from the stud trays are as follows:



|                                |    | Minimum | Maximum | Average | Non detects |
|--------------------------------|----|---------|---------|---------|-------------|
| Wall Type                      | n  | ug/g    | ug/g    | ug/g    | %           |
| Floor to slab                  | 30 | <3.8    | 420     | 73      | 22.2        |
| Non-insulated floor to ceiling | 24 | 13      | 100     | 40      | 0           |
| Insulated floor to ceiling     | 30 | <3.7    | <51     | 9.6     | 100         |

Lead bulk dust samples collected from the wallboard surfaces are as follows:

|                                |    | Minimum | Maximum | Average | Non detects |
|--------------------------------|----|---------|---------|---------|-------------|
| Wall Type                      | n  | ug/g    | ug/g    | ug/g    | %           |
| Floor to slab                  | 30 | <2.5    | 83      | 16      | 66.7        |
| Non-insulated floor to ceiling | 24 | <2.8    | 4.1     | 2.5     | 87.5        |
| Insulated floor to ceiling     | 30 | <3.3    | 11      | 3.3     | 70          |

Lead bulk dust samples were not collected from the interstitial wall cavities in this SI; however, these results confirm the presence of low levels of lead in the interstitial walls.

## 3.3 Silica

Ten silica wipe and one field blank samples were collected on various floors of the Building as detailed in Section 3.1. The silica sample results ranged from less than 0.055 mg/ft<sup>2</sup> to 2.42 mg/ft<sup>2</sup> with an arithmetic average of 0.55 mg/ft<sup>2</sup>. Sample results are provided in the attached Table 4.

A limited data validation was performed on the sample results in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (July 2002). In general, the data appeared to be valid as reported and may be used for decision-making purposes.

According to the *Initial Building Characterization Report*, there was significant variation in the quartz, a natural form of silica, testing results collected from the Building dust samples. Quartz was detected in 115 of the 118 samples tested. The samples containing quartz ranged from a low concentration of 500 ug/m² (0.46 mg/ft² - from Zone 2) to a maximum concentration of 10,000,000 ug/m² (929 mg/ft² - in Zone 1). These results are at least two orders of magnitude greater than the silica concentrations found within the interstitial walls.

TRC reviewed the *TP-06 Interior Wall Cavities Data Report*, which reported the average and maximum lead concentrations of samples collected in the non-gash areas of this report were 171.9 ug/ft<sup>2</sup> and 1,630 ug/ft<sup>2</sup>, respectively. These results are generally



consistent (within one order of magnitude) with the silica concentrations found in the interstitial walls of this SI.

According to the *Test Report on Wall Cavities "Wall Cell Protocol"* crystalline silica results of samples collected from the wallboard surface results are as follows:

|                                |    | Minimum            | Maximum            | Average            | Non detects |
|--------------------------------|----|--------------------|--------------------|--------------------|-------------|
| Wall Type                      | n  | ug/ft <sup>2</sup> | ug/ft <sup>2</sup> | ug/ft <sup>2</sup> | %           |
| Floor to slab                  | 30 | <92                | 815                | 327                | 16.7        |
| Non-insulated floor to ceiling | 26 | <92                | 1,296              | 244                | 38.5        |
| Insulated floor to ceiling     | 34 | <92                | 574                | 170                | 23.5        |

Silica results are generally consistent (within one order of magnitude) with the silica concentrations found in this SI.

# 3.4 <u>Dioxin</u>

Ten dioxin wipe and one field blank sample were collected at the same locations where asbestos wipe samples were collected as detailed in section 3.1. The World Health Organization (WHO) has established a convention whereby the results for all dioxin compounds are expressed as a toxicity equivalency concentration (TEQ). The TEQ is based upon TEF referenced to 2,3,7,8 TCDD, which is the most toxic of the dioxin compounds. The TEQ is computed by multiplying the concentration of each compound by the TEF. The products of the individual concentrations and the toxicity equivalent factors (TEFs) are then added to obtain the TEQ for that sample. For this investigation, one-half of the detection limit was used for compounds that were not detected. Dioxin TEQ results ranged from 0.84 nanograms per square meter (ng/m²) to 1.87 ng/m² with an arithmetic average of 1.10 ng/m². This average concentration is below the USEPA Tier III Benchmark concentration. Sample results are provided in the attached Table 5.

A limited data validation was performed on the sample results in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, EPA 540/R-99/008* (October 1999). In general, the data appeared to be valid as reported and may be used for decision-making purposes. Select results were qualified as non-detects due to blank contamination. There were no adverse affects on the data usability on the basis of these issues as the affected results were still significantly below the USEPA Tier I residential health-risk based benchmark value.



According to the *Initial Building Characterization Report*, there was significant variation in the dioxin testing results collected from the Building dust samples. Dioxin was detected in all 124 samples tested. The samples containing dioxin ranged from a low concentration of 1 ng/m<sup>2</sup> (from Zone 2) to a maximum concentration of 214 ng/m<sup>2</sup> (in Zone 5). The results of this study were at least an order of magnitude greater than the concentrations detected in this SI.

RJ Lee collected 175 dioxin/furan samples as outlined in the *TP-06 Interior Wall Cavities Data Report*. The results indicated average and maximum dioxin/furan results in the non-gash area were 46.1 ng/m<sup>2</sup> and 1,568.9 ng/m<sup>2</sup>, respectively. The dioxin/furan concentrations reported in the RJ Lee report are up to three orders of magnitude greater than the concentrations found in this SI.

According to the *Test Report on Wall Cavities "Wall Cell Protocol"* dioxin results of samples collected from the wallboard surface results are as follows:

|                                |    | Minimum | Maximum | Average | Non detects |
|--------------------------------|----|---------|---------|---------|-------------|
| Wall Type                      | n  | pg/g    | pg/g    | pg/g    | %           |
| Floor to slab                  | 30 | 0.2     | 153     | 13      | 0           |
| Non-insulated floor to ceiling | 24 | 0       | 1.7     | 0.37    | 4.2         |
| Insulated floor to ceiling     | 29 | 0       | 32      | 3.6     | 3.4         |

Dioxin bulk dust samples collected from the stud tray are as follows:

|                                |    | Minimum | Maximum | Average | Non detects |
|--------------------------------|----|---------|---------|---------|-------------|
| Wall Type                      | n  | pg/g    | pg/g    | pg/g    | %           |
| Floor to slab                  | 9  | 1.2     | 62      | 17      | 0           |
| Non-insulated floor to ceiling | 11 | 0       | 24      | 5.1     | 54.5        |
| Insulated floor to ceiling     | 14 | 0       | 2.3     | 0.43    | 50.0        |

Dioxin bulk dust samples were not collected from the interstitial wall cavities in this SI; however, these results confirm the presence of low levels of dioxins in the interstitial walls.



### 3.5 Polycyclic Aromatic Hydrocarbons (PAHs)

Ten PAH wipe and one field blank samples were collected at the same locations where asbestos wipe samples were collected as detailed in section 3.1. The carcinogenic PAHs results were used to calculate the benzo(a)pyrene (BaP) equivalent to measure the relative potency. The BaP equivalent is computed by multiplying the concentration of each compound by the TEF. The products of the individual concentrations and the TEFs are then added to obtain the BaP equivalent for that sample. For this investigation, one-half of the detection limit was used for compounds that were not detected. No PAHs were detected in the interior walls and all BaP equivalent wipe results were less than 57.8 micrograms per square meter (ug/m²). Sample results are provided in the attached Table 6.

A limited data validation was performed on the sample results in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review EPA 540/R-99/008* (October 1999). In general, the data appeared to be valid as reported and may be used for decision-making purposes. Potential low bias exists for anthracene and benzo(a)pyrene in the samples KD-24-W-IntWall-PAH-009I and KD-29-W-IntWall-PAH-010I due to low LCS recoveries. This has minimal effect on the data usability since all results are still approximately two orders of magnitude lower than USEPA Tier I residential health-risk based benchmark value.

According to the *Initial Building Characterization Report*, there was significant variation in the PAH testing results collected from the Building dust samples. The samples containing PAH ranged from a low concentration of 3 ug/m<sup>2</sup> (from Zone 1) to a maximum concentration of 11,555 ug/m<sup>2</sup> (in Zone 2). The PAH concentrations reported in the *Initial Building Characterization Report* were greater than the non-detect concentrations found in this SI.

RJ Lee collected 167 dioxin/furan samples as outlined in the *TP-06 Interior Wall Cavities Data Report*. The results indicated average and maximum PAH results in the non-gash area were 15.0 ug/m<sup>2</sup> and 184.1 ug/m<sup>2</sup>, respectively. The PAH concentrations reported in the RJ Lee report are greater than the non-detect concentrations found in this SI.

## 3.6 Man Made Vitreous Fibers (MMVF)

Ten MMVF wipe and one field blank sample were collected at the same locations where asbestos wipe samples were collected as detailed in section 3.1. The MMVF wipe results ranged from 15.17 str/cm<sup>2</sup> to 641.3 str/cm<sup>2</sup>, with an arithmetic mean of 142.19 str/cm<sup>2</sup>.



This average is approximately three orders of magnitude less than the USEPA Tier I benchmark 1-year risk based concentration. Sample results summary is provided in the attached Table 7.

A limited data validation was performed on the samples in accordance with the *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review EPA 540/R-99/008* (October 1999). In general, the data appeared to be valid as reported and may be used for decision-making purposes.



#### 4. FINDINGS

This Supplemental Investigation has identified that none of the COPCs exceed the Tier I value in the September 2002 WTC Indoor Air Assessment study. Asbestos was not detected in any of the wipe samples; however, it was identified to be present in one out of three bulk dust samples collected. This bulk dust sample was collected from a second floor interior wall interstitial space that had a previous sheetrock penetration. Therefore this result is not representative of an un-impacted interior wall interstitial space; rather it should be considered representative of general interior dust conditions. The average lead, silica, MMVF and dioxin results exceed the April 2003 Background Study criteria but were found to be less than the USEPA Tier I Benchmark concentrations. PAHs were not detected in any of the samples collected.

While the USEPA residential benchmark and background concentrations relate to residential settings and are not directly applicable to a commercial deconstruction project, these studies can be used to put the results of this supplemental investigation into relative context.

#### 5. CONCLUSIONS AND RECOMMENDATIONS

COPCs concentrations within the dust on the surfaces of the interior walls interstitial spaces were at least an order of magnitude less than the COPC levels for the dust in the accessible areas discussed in the *Initial Building Characterization Report* and the *Interior Wall Cavities Data Report*. No asbestos or PAHs were detected on the wipe samples collected from the interior wall interstitial spaces. Lead, silica, MMVF and dioxin arithmetic average results were less than Tier I USEPA Benchmark concentrations but exceeded the USEPA residential background criteria. The results of the sampling and testing performed for this Supplemental Investigation revealed low levels of contaminants in connection with the Building deconstruction, which are inconsistent with previous studies. Therefore, TRC recommends review of the results by federal, state, and local regulators and that the interior wall interstitial spaces be handled in a manner that complies with applicable laws.



#### 6. REFERENCES

Damage Assessment, 130 Liberty Street Property, Contamination Report Pursuant to Testing Protocol-06, Interior Wall Cavities Data Report. RJ Lee Group, Inc., May 2003.

Initial Building Characterization Study Report, 130 Liberty Street, New York, New York. The Louis Berger Group, Inc., September 14, 2004.

Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response, Washington, D.C. United States Environmental Protection Agency, December 1989.

Sampling, Analysis, and Quality Assurance Project Plan, Supplement Investigation of 130 Liberty Street, New York, New York. TRC Environmental Corp., November 15, 2004.

Settled Asbestos Dust Sampling and Analysis. James R. Millette, Steven M. Hays, 1994.

Test Report on Wall Cavities "Wall Cell Protocol" at the Deutsche Bank Building 130 Liberty Street, New York, New York. Young Laboratories, Inc., September 27, 2004.

World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

World Trade Center Background Study Report, Interim Final. United States Environmental Protection Agency, Region 2, April 2003.



Interstitial Walls LMDC 130 Liberty Street New York, New York February 10, 2005

# **TABLE OF CONTENTS**

|                                  | Table  |
|----------------------------------|--------|
| Compound                         | Number |
| Asbestos                         | 1      |
| Asbestos Bulk                    | 2      |
| Lead                             | 3      |
| Silica                           | 4      |
| Dioxin                           | 5      |
| Polycyclic Aromatic Hydrocarbons | 6      |
| Man Made Vitreous Fibers         | 7      |

Table 1 Interior Wall Interstitial Spaces - Asbestos Asbestos Wipe (SW 6480-99)

|                             |                |             |             |       |                          | Asbestos                      |
|-----------------------------|----------------|-------------|-------------|-------|--------------------------|-------------------------------|
| Sample ID                   | Lab Sample ID  | Sample Date | Sample Type | Floor | Location                 | (structures/cm <sup>2</sup> ) |
| KD-7-W-INT.WALL-ASB-001I    | 030423849-0001 | 12/2/2004   | Wipe        | 7     | Sheetrock, GF-56         | <6,250                        |
| KD-26-W-INT.WALL-ASB-001I   | 030423849-0002 | 12/2/2004   | Wipe        | 26    | Sheetrock, GF-56         | <6,250                        |
| KD-4-W-INT.WALL-ASB-002I    | 030423849-0003 | 12/2/2004   | Wipe        | 4     | Sheetrock, DC-23         | <6,250                        |
| KD-20-W-INT.WALL-ASB-003I   | 030423849-0004 | 12/2/2004   | Wipe        | 20    | Sheetrock, CB-34         | <6,250                        |
| KD-16-W-ASB-INT.WALL-004I   | 030423849-0006 | 12/2/2004   | Wipe        | 16    | Sheetrock,n HG-56        | <6,250                        |
| KD-14-W-ASB-INT.WALL-005I   | 030423849-0007 | 12/2/2004   | Wipe        | 14    | Sheetrock, AB-24         | <6,250                        |
| KD-10-W-ASB-INT-007I        | 030423849-0009 | 12/2/2004   | Wipe        | 10    | Sheetrock,n GF-56        | <6,250                        |
| KD-2-W-INT.WALL-ASB-008I    | 030423849-0011 | 12/2/2004   | Wipe        | 2     | Sheetrock, HG-45         | <6,250                        |
| KD-24-WIPEINT.WALL-ASB-009I | 030423953-0003 | 12/3/2004   | Wipe        | 24    | Sheetrock, NW Area AB-45 | <6,250                        |
| KD-29-WIPEINT.WALL-ASB-010I | 030423953-0004 | 12/3/2004   | Wipe        | 29    | Sheetrock, NE area GH-78 | <6,970                        |
| KD-000-W-INT.WALL-ASB-000   | 030423849-0013 | 12/2/2004   | Wipe        |       |                          | Blank                         |

|                                                   | str/cm2               |
|---------------------------------------------------|-----------------------|
| Arithmetic Mean (ND=1/2)                          | None detected         |
| May 2003 Benchmark <sup>1</sup>                   | n/a                   |
| April 2003 WTC Background Study <sup>2</sup>      | 6,192                 |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                       |
| Tier I                                            | >30,000               |
| Tier II                                           | >30,000 to background |
| Tier III                                          | Background            |

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final. United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

Table 2 Interior Wall Interstitial Spaces - Asbestos Asbestos Bulk PLM (NYS ELAP 198.1)

| Sample ID                     | Lab Sample ID  | Sample Date | Sample Type | Floor | Location      | Asbestos<br>(percent) |
|-------------------------------|----------------|-------------|-------------|-------|---------------|-----------------------|
| KD-7-ASB-INT.DUST-001I        | 030423846-0001 | 12/2/2004   | Bulk        | 7     | FG-56         | NAD                   |
| KD-02-BULK-INT.WALL-DUST-007I | 030423846-0009 | 12/2/2004   | Bulk        | 2     | G-3           | 1.57%                 |
| ZD-29-BULK-INTWALL-DUST-001I  | 030423956-0001 | 12/3/2004   | Bulk        | 29    | NE area GH-78 | NAD                   |

Table 3 Interior Wall Interstitial Spaces - Lead Lead Wipe (SW 846, 7420)

| Sample ID                   | Lab Sample ID  | Sample Date | Sample Type | Floor | Location                          | Lead<br>(ug/ft2) | Lead<br>(ug/m2) |
|-----------------------------|----------------|-------------|-------------|-------|-----------------------------------|------------------|-----------------|
| KD-26-W-PB-INTWALL-001I     | 030423947-0001 | 12/2/2004   | Wipe        | 26    | Sheetrock, tent location GF-56    | <10              | <108            |
| KD-7-W-PB-INTWALL-001I      | 030423947-0002 | 12/2/2004   | Wipe        | 7     | Sheetrock, tent location GF-56    | 24               | 258             |
| KD-20-W-PB-INTWALL-003I     | 030423947-0003 | 12/2/2004   | Wipe        | 20    | Sheetrock, tent location CB-34    | <10              | <108            |
| KD-4-W-PB-INTWALL-002I      | 030423947-0004 | 12/2/2004   | Wipe        | 4     | Sheetrock, tent location DC-23    | <10              | <108            |
| KD-16-W-PB-INTWALL-004I     | 030423947-0005 | 12/2/2004   | Wipe        | 16    | Exterior wall tent location HG-56 | <10              | <108            |
| KD-14-W-PB-INT.WALL-005I    | 030423947-0006 | 12/2/2004   | Wipe        | 14    | Sheetrock, tent location AB-24    | <10              | <108            |
| KD-10-W-PB-INTWALL-007I     | 030423947-0008 | 12/2/2004   | Wipe        | 10    | Sheetrock, tent location GF-56    | <10              | <108            |
| KD-2-W-PB-INTWALL-008I      | 030423947-0009 | 12/2/2004   | Wipe        | 14    | Sheetrock, tent location HG-45    | <10              | <108            |
| KD-000-W-PB-000-FBLANK      | 030423947-0011 | 12/2/2004   |             |       | Blank                             | <10              | <108            |
| KD-24-WIPE-INTWALLLEAD-009I | 030423954-0003 | 12/3/2004   | Wipe        | 24    | Sheetrock, NW Area A-4            | 16               | 172             |
| KD-29-WIPE-INTWALLLEAD-010I | 030423954-0005 | 12/3/2004   | Wipe        | 29    | Sheetrock, NE Area GH-78          | <10              | <108            |

|                                                   | ug/ft2                   |
|---------------------------------------------------|--------------------------|
| Arithmetic Mean (ND=1/2)                          | 8                        |
| May 2003 Benchmark <sup>1</sup>                   | 25                       |
| April 2003 WTC Background Study <sup>2</sup>      | 1.78                     |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                          |
| Tier I                                            | >40                      |
| Tier II                                           | 40 to 25 (or background) |
| Tier III                                          | <25 (or background)      |

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final . United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

Table 4 Interior Wall Interstitial Spaces - Silica Silica Wipe (NIOSH 7500, XRD)

| Sample ID                    | Lab Sample ID  | Sample Date | Sample Type | Floor | Location | Silica (mg/ft2) |
|------------------------------|----------------|-------------|-------------|-------|----------|-----------------|
| KD-24-W-INT.WALL-SILICA-009I | 040425315-0001 | 12/3/2004   | Wipe        | 24    | CB-45    | 0.084           |
| KD-29-W-INT.WALL-SILICA-010I | 040425315-0002 | 12/3/2004   | Wipe        | 29    | HG-78    | 2.420           |
| KD-7-W-INT.WALL-SILICA-001I  | 040425316-0001 | 12/2/2004   | Wipe        | 7     | GF-56    | 1.340           |
| KD-4-W-INT.WALL-SILICA-002I  | 040425316-0002 | 12/2/2004   | Wipe        | 4     | DC-23    | 0.356           |
| KD-20-W-INT.WALL-SILICA-003I | 040425316-0003 | 12/2/2004   | Wipe        | 20    | DC-24    | 0.255           |
| KD-16-W-INT.WALL-SILICA-004I | 040425316-0004 | 12/2/2004   | Wipe        | 16    | GH-56    | 0.055           |
| KD-14-W-INT.WALL-SILICA-005I | 040425316-0005 | 12/2/2004   | Wipe        | 14    | AB-34    | 0.065           |
| ZD-26-W-INT.WALL-SILICA-006I | 040425316-0006 | 12/2/2004   | Wipe        | 26    |          | 0.260           |
| KD-000-W-SILICA-BLANK-000    | 040425316-0007 | 12/2/2004   | Wipe        |       | Blank    | 0.000           |
| KD-10-W-INT.WALL-SILICA-007I | 040425316-0008 | 12/2/2004   | Wipe        | 10    | GF-56    | 0.515           |
| KD-2-W-INT.WALL-SILICA-008I  | 040425316-0009 | 12/2/2004   | Wipe        | 2     | GF-56    | 0.196           |

|                                                   | mg/ft2                        |
|---------------------------------------------------|-------------------------------|
| Arithmetic Mean                                   | 0.55                          |
| May 2003 Benchmark <sup>1</sup>                   | n/a                           |
| April 2003 WTC Background Study <sup>2</sup>      | >0.0796 (expressed as quartz) |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                               |
| Tier I                                            |                               |
| Tier II                                           | above background              |
| Tier III                                          | background                    |

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final. United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

Table 5 Interior Wall Interstitial Spaces - Dioxin Dioxin (SW 846-8290)

| Sample ID                | Lab Sample ID | Sample Date | Sample Type | Floor | Location | TEQ (ND=1/2; ng/m2) |
|--------------------------|---------------|-------------|-------------|-------|----------|---------------------|
| ZD-26-W-DX-Int.Wall-001I | G220-29-1C    | 12/2/2004   | Wipe        | 26    | GF-56    | 1.07                |
| KD-7-W-DX-Int.Wall-001I  | G220-29-2C    | 12/2/2004   | Wipe        | 7     | GF-56    | 0.84                |
| KD-20-W-DX-Int.Wall-003I | G220-29-3C    | 12/2/2004   | Wipe        | 20    | DC-23    | 0.89                |
| KD-4-W-DX-Int.Wall-002I  | G220-29-4C    | 12/2/2004   | Wipe        | 4     | DC-23    | 1.24                |
| KD-16-W-DX-Int.Wall-004I | G220-29-6C    | 12/2/2004   | Wipe        | 16    | GH-56    | 0.87                |
| KD-14-W-DX-Int.Wall-005I | G220-29-7C    | 12/2/2004   | Wipe        | 14    | AB-34    | 1.02                |
| KD-10-W-DX-Int.Wall-007I | G220-29-10C   | 12/2/2004   | Wipe        | 10    | GF-56    | 0.84                |
| KD-2-W-DX-Int.Wall-008I  | G220-29-11C   | 12/2/2004   | Wipe        | 2     | GF-56    | 1.03                |
| KD-000-W-Dx-000-Fblank   | G220-29-12C   | 12/2/2004   | Wipe        |       | Blank    | 1.36                |
| KD-24-W-Int.Wall DX-009I | G220-30-3B    | 12/3/2004   | Wipe        | 24    | A-4      | 1.87                |
| KD-29-W-Int.Wall DX-010I | G220-30-5B    | 12/3/2004   | Wipe        | 29    | GH-78    | 1.32                |

|                                                   | ng/m2                    |
|---------------------------------------------------|--------------------------|
| Arithmetic Mean                                   | 1.10                     |
| May 2003 Benchmark <sup>1</sup>                   | 2.0                      |
| April 2003 WTC Background Study <sup>2</sup>      | 0.693                    |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                          |
| Tier I                                            | >120                     |
| Tier II                                           | 120 to 4 (or background) |
| Tier III                                          | <4 (or background)       |

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final. United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

Table 6 Interior Wall Interstitial Spaces - Polycyclic Aromatic Hydrocarbons (PAH) PAH (SW 846-8290)

| 0 1 15                    |               | 0 1 5 /     | 0           | F1    |                  | PAH     | Benzo(a)Pyrene     |
|---------------------------|---------------|-------------|-------------|-------|------------------|---------|--------------------|
| Sample ID                 | Lab Sample ID | Sample Date | Sample Type | Floor | Location         | (ug/m2) | Equivalent (ug/m2) |
| ZD-26-W-PAH-Int.Wall-001I | G220-27-1B    | 12/2/2004   | Wipe        | 26    | Sheetrock, GF-56 | <800    | <57.8              |
| KD-7-W-PAH-Int.Wall-001I  | G220-27-2B    | 12/2/2004   | Wipe        | 7     | Sheetrock, GF-56 | <800    | <57.9              |
| KD-20-W-PAH-Int.Wall-003I | G220-27-3B    | 12/2/2004   | Wipe        | 20    | Sheetrock, CB-34 | <800    | <57.10             |
| KD-4-W-PAH-Int.Wall-002I  | G220-27-4B    | 12/2/2004   | Wipe        | 4     | Sheetrock, DC-23 | <800    | <57.11             |
| KD-16-W-PAH-Int.Wall-004I | G220-27-6B    | 12/2/2004   | Wipe        | 16    | Sheetrock, HG-56 | <800    | <57.12             |
| KD-14-W-PAH-Int.Wall-005I | G220-27-7B    | 12/2/2004   | Wipe        | 14    | Sheetrock, AB-24 | <800    | <57.13             |
| KD-10-W-PAH-Int.Wall-007I | G220-27-10B   | 12/2/2004   | Wipe        | 10    | Sheetrock, GF-56 | <800    | <57.14             |
| KD-2-W-PAH-Int.Wall-008I  | G220-27-12B   | 12/2/2004   | Wipe        | 2     | Sheetrock, HG-45 | <800    | <57.15             |
| KD-24-W-PAH-Int.Wall-009I | G220-28-3B    | 12/2/2004   | Wipe        | 24    | Sheetrock, CB-45 | <800    | <57.16             |
| KD-29-W-PAH-Int.Wall-010I | G220-28-5B    | 12/2/2004   | Wipe        | 29    | Sheetrock, HG-78 | <800    | <57.17             |
| KD-000-PAH-W-Blank-000    | G220-28-6B    | 12/2/2004   | Wipe        |       | Blank            | <800    | <57.18             |

|                                                   | ug/m2 - BaP Equivalent       |  |  |
|---------------------------------------------------|------------------------------|--|--|
| BaP Arithmetic Mean (ND=1/2)                      | <57.8                        |  |  |
| May 2003 Benchmark <sup>1</sup>                   | 150                          |  |  |
| April 2003 WTC Background Study <sup>2</sup>      |                              |  |  |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                              |  |  |
| Tier I                                            | >9,000                       |  |  |
| Tier II                                           | 9,000 to 300 (or background) |  |  |
| Tier III                                          | <300 (or background)         |  |  |

Benzo(a)pyrene Equivalent using 1/2 the detection limit.

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final. United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.

Table 7 Interior Wall Interstitial Spaces - Man Made Vitreous Fibers MMVF Wipe (EMSL MSD 0310)

| Sample ID                     | Lab Sample ID  | Sample Date | Sample Type | Floor | Location | MMVF (str/cm2) |
|-------------------------------|----------------|-------------|-------------|-------|----------|----------------|
| KD-7-Int.Wall-MMVF-001        | 360401138-0001 | 12/2/2004   | Wipe        | 7     | GF-56    | 234.40         |
| KD-4-Int.Wall-MMVF-002        | 360401138-0002 | 12/2/2004   | Wipe        | 4     | DC-23    | 41.40          |
| KD-20-Int.Wall-MMVF-003       | 360401138-0003 | 12/2/2004   | Wipe        | 20    | DC-23    | 27.60          |
| KD-16-Int.Wall-MMVF-004       | 360401138-0004 | 12/2/2004   | Wipe        | 16    | GH-56    | 27.60          |
| KD-14-Int.Wall-MMVF-005       | 360401138-0005 | 12/2/2004   | Wipe        | 14    | AB-34    | 172.40         |
| KD-26-Int.Wall-MMVF-006       | 360401138-0006 | 12/2/2004   | Wipe        | 26    | GF-56    | 641.30         |
| KD-10-Int.Wall-MMVF-007       | 360401138-0007 | 12/2/2004   | Wipe        | 10    | GF-56    | 20.70          |
| KD-2-Int.Wall-MMVF-008        | 360401138-0008 | 12/2/2004   | Wipe        | 2     | GF-56    | 20.70          |
| KD-000-W-MMVF-Blank-000       | 360401138-0009 | 12/2/2004   | Wipe        |       | Blank    | ND             |
| KD-24-wipe-Int.Wall-MMVF-009I | 360401139-0001 | 12/3/2004   | Wipe        | 24    | A-4      | 15.17          |
| KD-29-wipe-Int.Wall-MMVF-010I | 360401139-0002 | 12/3/2004   | Wipe        | 29    | GH-78    | 220.60         |

|                                                   | str/cm2               |  |  |
|---------------------------------------------------|-----------------------|--|--|
| Arithmetic Mean (ND=1/2)                          | 142.19                |  |  |
| May 2003 Benchmark <sup>1</sup>                   | n/a                   |  |  |
| April 2003 WTC Background Study <sup>2</sup>      |                       |  |  |
| September 2002 WTC Indoor Assessment <sup>3</sup> |                       |  |  |
| Tier I                                            | >100,000              |  |  |
| Tier II                                           | 100,000 to background |  |  |
| Tier III                                          | background            |  |  |

<sup>&</sup>lt;sup>1</sup>World Trade Center Indoor Environment Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee. United States Environmental Protection Agency, May 2003.

<sup>&</sup>lt;sup>2</sup>World Trade Center Background Study Report, Interim Final . United States Environmental Protection Agency, Region 2, April 2003.

<sup>&</sup>lt;sup>3</sup>World Trade Center Indoor Air Assessment: Selecting Contaminants of Potential Concern and Setting Health-Based Benchmarks. Contaminants of Potential Concern (COPC) Committee of the World Trade Center Indoor Air Taskforce Working Group. Peer Review Draft, September 2002.